Journal of Morphological Sciences
http://www.jms.periodikos.com.br/article/doi/10.4322/jms.118617
Journal of Morphological Sciences
Original Article

Estrogen treatment effects on rats soleus muscles’ glycogen content, extracellular matrix and cross-sectional area

SEVERI, M. T. M.; DURIGAN, J. L. Q.; PEREIRA, E. C. L.; BATISTA E SILVA, L. L.; MARTINS, W. R.; VIEIRA, E. R.; TIBANA, R. A.; PRESTES, J.; MARQUETI, R. C.; SILVA, C. A.

Downloads: 0
Views: 218

Abstract

 Objective: To evaluate the effects of estrogen treatment of rats’ soleus muscles after denervation on glucose metabolism, muscle mass, glycogen content, cross-sectional area and connective tissue density. Methods: Eighteen rats were divided into the following three groups of six animals: control, denervated for 7 days (denervated), and denervated with estradiol treatment for 7 days (denervated and treated). We measured glucose and insulin tolerance, muscle glycogen, mass, cross-sectional area and connective tissue content. Results: The denervated only and the denervated and treated groups displayed a significant reduction in glucose uptake (32% and 53% respectively compared with the control group; p<0.05). Soleus muscle denervation reduced muscle glycogen (0.25 ± 0.03 vs 0.43 ± 0.02 mg/100mg; p<0.05), muscle mass (0.33 ± 0.09 vs. 0.48 ± 0.06 mg/g; p<0.05) and cross-sectional area (1626 ± 352 vs. 2234 ± 349 ?m2 ; p<0.05), and increased connective tissue content (35 ± 7 vs. 10 ± 5%; p<0.05) compared to controls. Estrogen treatment decreased connective tissue density in the denervated and treated group (24 ± 4%; p<0.05) compared to the denervated group. It also prevented alterations on muscle glycogen in denervated and trated group. However, estrogen treatment did not prevent muscle atrophy (1626 ± 352 vs. 1712 ± 319 ?m2 ). Conclusion: Estrogen treatment of rats’ soleus muscles after denervation increased muscle glycogen content and minimized connective tissue density increase, but it did not prevent muscle atrophy.

Keywords

denervation, estrogen, muscle atrophy, muscle glycogen, connective tissue.

References

CODERRE, L., MONFAR, MM., CHEN, KS., HEYDRICK, SJ., KUROWSKI, TG., RUDERMAN, NB. and PILCH, PF. Alteration in the expression of GLUT-1 and GLUT-4 protein and messenger RNA levels in denervated rat muscles. Endocrinology, 1992, vol. 131, n. 4, p. 1821-1825. PMid:1396328. http://dx.doi.org/10.1210/endo.131.4.1396328.

DORCHIES, OM., REUTENAUER-PATTE, J., DAHMANE, E., ISMAIL, HM., PETERMANN, O., PATTHEY-VUADENS, O., COMYN, SA., GAYI, E., PIACENZA, T., HANDA, RJ., DÉCOSTERD, LA. and RUEGG, UT. The anticancer drug tamoxifen counteracts the pathology in a mouse model of Duchenne muscular dystrophy. American Journal of Pathology, 2013, vol. 182, n. 2, p. 485-504. PMid:23332367. http://dx.doi.org/10.1016/j.ajpath.2012.10.018.

GONZÁLEZ, C., ALONSO, A., GRUESO, NA., DIAZ, F., ESTEBAN, MM., FERNÁNDEZ, S. and PATTERSON, AM. Role of 17β-estradiol administration on insulin sensitivity in the rat: implications for the insulin receptor. Steroids, 2002, vol. 67, n. 13- 14, p. 993-1005. PMid:12441184. http://dx.doi.org/10.1016/S0039-128X(02)00073-9.

GREISING, SM., BALTGALVIS, KA., KOSIR, AM., MORAN, AL., WARREN, GL. and LOWE, DA. Estradiol’s beneficial effect on murine muscle function is independent of muscle activity. Journal of Applied Physiology (Bethesda, Md. : 1985), 2011, vol. 110, n. 1, p. 109-115. PMid:20966194. http://dx.doi.org/10.1152/japplphysiol.00852.2010.

GUO, T., LIU, W., KONERMANN, A., GU, Z., CAO, M. and DING, Y. Estradiol modulates the expression pattern of myosin heavy chain subtypes via an ERα-Mediated pathway in muscle-derived tissues and satellite cells. Cellular Physiology and Biochemistry, 2014, vol. 33, n. 3, p. 681-691. PMid:24643056. http://dx.doi.org/10.1159/000358644.

HANSEN, M., SKOVGAARD, D., REITELSEDER, S., HOLM, L., LANGBJERG, H. and KJAER, M. Effects of estrogen replacement and lower androgen status on skeletal muscle collagen and myofibrillar protein synthesis in postmenopausal women. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 2012, vol. 67, n. 10, p. 1005-1013. PMid:22389460. http://dx.doi.org/10.1093/gerona/gls007.

HENRIKSEN, EJ., RODNICK, KJ., MONDON, CE., JAMES, DE. and HOLLOSZY, JO. Effect of desnervation or unweighting on GLUT 4 protein in rat soleus muscle. Journal of Applied Physiology (Bethesda, Md.), 1997, vol. 70, n. 5, p. 2322-2327.

HIROSE, M., KANEKI, M., SUGITA, H., YASUHARA, S., MARTYN, JAJ. and IEBUNJO, C. Long-term denervation impairs insulin receptor substrate-1-mediated insulin signaling in skeletal muscle. Metabolism: Clinical and Experimental, 2001, vol. 50, n. 2, p. 216-222. PMid:11229432. http://dx.doi.org/10.1053/meta.2001.20169.

HUSS, JM., TORRA, IP., STAELS, B., GIGUÈRE, V. and KELLY, DP. Estrogen-related receptor alpha directs peroxisome proliferatoractivated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Molecular and Cellular Biology, 2004, vol. 24, n. 20, p. 9079-9091. PMid:15456881. http://dx.doi.org/10.1128/MCB.24.20.9079-9091.2004.

KAMANGA-SOLLO, E., WHITE, ME., WEBER, WJ. and DAYTON, WR. Role of estrogen receptor-α (ESR1) and the type 1 insulin-like growth factor receptor (IGFR1) in estradiol-stimulated proliferation of cultured bovine satellite cells. Domestic Animal Endocrinology, 2013, vol. 44, n. 1, p. 36-45. PMid:23036864. http://dx.doi.org/10.1016/j.domaniend.2012.08.002.

KAWANO, S., KANDA, K., OHMORI, S., IZUMI, R., YASUKAWA, K., MURATA, Y. and SEO, H. Effect of estrogen on the development of disuse atrophy of bone and muscle induced by tail-supension in rats. Environmental Medicine, 1997, vol. 41, n. 2, p. 89-92. PMid:11541508.

LIN, Y., BRADY, MJ., WOLANSKE, K., HOLBERT, R., RUDERMAN, NB. and YANEY, GC. Alterations of nPKC distribution, but normal Akt/PKB activation in denervated rat soleus muscle. American Journal of Physiology. Endocrinology and Metabolism, 2002, vol. 283, n. 2, p. E318-E325. PMid:12110537. http://dx.doi.org/10.1152/ajpendo.00390.2001.

LO, S., RUSSELL, JC. and TAYLOR, AW. Determination of glycogen in small tissue samples. Journal of applied physiology, 1970, vol. 28, n. 2, p. 234-236. PMid:5413312.

MANGELSDORF, DJ., THUMMEL, C., BEATO, M., HERRLICH, P., SCHUTZ, G., UMESONO, K., BLUMBERG, B., KASTNER, P., MARK, M., CHAMBON, P. and EVANS, RM. The nuclear receptor superfamily: the second decade. Cell, 1995, vol. 83, n. 6, p. 835-839. PMid:8521507. http://dx.doi.org/10.1016/0092-8674(95)90199-X.

MATHIEU, O., CRUZ-ORIVE, LM., HOPPELER, H. and WEIBEL, ER. Measuring error and sampling variation in stereology: comparison of the efficiency of various methods for planar image analysis. Journal of Microscopy, 1981, vol. 121, n. Pt 1, p. 75-88. PMid:7014911. http://dx.doi.org/10.1111/j.1365-2818.1981.tb01200.x.

MAUVAIS-JARVIS, F., CLEGG, DJ. and HEVENER, AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocrine Reviews, 2013, vol. 34, n. 3, p. 309-338. PMid:23460719. http://dx.doi.org/10.1210/er.2012-1055.

MCCLUNG, JM., DAVIS, JM., WILSON, MA., GOLDSMITH, EC. and CARSON, JA. Estrogen status and skeletal muscle recovery from disuse atrophy. Journal of Applied Physiology (Bethesda, Md. : 1985), 2006, vol. 100, n. 6, p. 2012-2023. PMid:16497837. http://dx.doi.org/10.1152/japplphysiol.01583.2005.

OZAWA, J., KUROSE, T., KAWAMATA, S., KANEGUCHI, A., MORIYAMA, H. and KITO, N. Regulation of connective tissue remodeling in the early phase of denervation in a rat skeletal muscle. Biomedical Research, 2013, vol. 34, n. 5, p. 251-258. PMid:24190237. http://dx.doi.org/10.2220/biomedres.34.251.

RONDA, AC., VASCONSUELO, A. and BOLAND, R. Extracellularregulated kinase and p38 mitogen-activated protein kinases are involved in the antiapoptotic action of 17beta-estradiol in skeletal muscle cells. The Journal of Endocrinology, 2010, vol. 206, n. 2, p. 235-246. PMid:20488946. http://dx.doi.org/10.1677/JOE-09-0429.

SCHIAFFINO, S., DYAR, KA., CICILIOT, S., BLAAUW, B. and SANDRI, M. Mechanisms regulating skeletal muscle growth and atrophy. The FEBS Journal, 2013, vol. 280, n. 17, p. 4294-4314. PMid:23517348. http://dx.doi.org/10.1111/febs.12253.

SKELTON, DA., PHILLIPS, SK., BRUCE, SA., NAYLOR, CH. and WOLEDGE, RC. Hormone replacement therapy increases isometric muscle strength of adductor pollicis in post-menopausal women. Clinical Science (London, England : 1979), 1999, vol. 96, n. 4, p. 357-364. PMid:10087242. http://dx.doi.org/10.1042/cs0960357.

TIIDUS, PM., LOWE, DA. and BROWN, M. Estrogen replacement and skeletal muscle: mechanisms and population health. Journal of Applied Physiology (Bethesda, Md. : 1985), 2013, vol. 115, n. 5, p. 569-578. PMid:23869062. http://dx.doi.org/10.1152/japplphysiol.00629.2013.

TSAI, WJ., MCCORMICK, KM., BRAZEAU, DA. and BRAZEAU, GA. Estrogen effects on skeletal muscle insulin-like growth factor 1 and myostatin in ovariectomized rats. Experimental Biology and Medicine (Maywood, N.J.), 2007, vol. 232, n. 10, p. 1314-1325. PMid:17959844. http://dx.doi.org/10.3181/0704-RM-92.

TURINSKY, J. and DAMRAU-ABNEY, A. Akt1 kinase and dynamics of insulin resistance in denervated muscles in vivo. The American Journal of Physiology, 1998, vol. 275, n. 5 Pt 2, p. R1425-R1430. PMid:9791057.

TURINSKY, J. Dynamics of insulin resistance in denervated slow and fast muscles in vivo. The American Journal of Physiology, 1987, vol. 252, n. 3 Pt 2, p. R531-R537. PMid:3826414.

WALLIS, MG., APPLEBY, GJ., YOUD, JM., CLARK, MG. and PENSCHOW, JD. Reduced glycogen phosphorylase activity in denervated hindlimb muscles of rat is related to muscle atrophy and fibre type. Life Sciences, 1999, vol. 64, n. 4, p. 221-228. PMid:10027756. http://dx.doi.org/10.1016/S0024-3205(98)00557-8.

XU, PT., SONG, Z., ZHANG, WC., JIAO, B. and YU, ZB. Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle. BioMed Research International, 2015, vol. 2015, n. 2015, p. 291987. http://dx.doi.org/10.1155/2015/291987.

5a32b82a0e8825a26b7bc49e jms Articles
Links & Downloads

J. Morphol. Sci.

Share this page
Page Sections