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Abstract

This paper offers a literature review on the effects of immobilization on rat skeletal muscle tissue. The authors
were unanimous with regard to the reduction in muscle mass, cross-section area and myonuclei in the muscles
studied, especially in relation to the alteration in the regulation of the protein synthesis and degradation
process as well as an alteration in the activity of oxidative enzymes caused by immobilization. With regard
to the muscle fiber type, most authors report having found a greater amount of type 2 fibers over type 1
fibers, thereby implying an alteration in the contractile function of the affected muscle. These findings suggest
greater degradation and/or substitution of tonic (postural or type 1) fibers by phasic (rapid contraction or
type 2) fibers. Thus, the present study suggests that, regardless of the method employed, immobilization has

harmful effects on skeletal muscle tissue in rats.
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1 Introduction

The immobilization of parts of the body results in
poor functioning and/or atrophy induced by the disuse of
muscles and/or muscle groups, impairing the control and
motor activities developed by this tissue (ROY et al., 2000;
FITTS et al., 2001). Skeletal muscle tissue is known to be
the most plastic and responsive of the bodily tissues, the
phenotype of which can be molded through diverse stimuli
and pathological or physiological conditions. During periods
of inactivity, disuse leads to degenerative alterations in the
muscle fibers (MUSACCHIA, STEFFEN and FELL, 1988).
The immobilization of joints can have harmful effects on
skeletal muscle tissue, such as hypotrophy, and can cause an
increase in the connective tissue between and round muscle
fibers as well as the loss of muscle extendibility and limitations
tojoint movement (WILLIAMS etal.,1988; APPELL, 1990;
JARVINEN et al., 2002; SILVA et al., 2000).

Hypertrophy or muscle atrophy is a frequent condition
found in both humans and animals alike in response
to a variety of physiological and pathological stimuli
(MITCHELL and PAVLATH, 2001; JACKMAN and
KANDARIAN, 2004). Such stimuli may be associated to
clinical conditions related to orthopedic conditions, such as
torn ligaments, bone fractures, medullary and muscle injuries,
inflammatory processes, degenerative joint processes and
muscle diseases, as well as patients confined to bed for long
periods of time, astronauts,/cosmonauts and individuals who
wear limb braces (SILVA et al., 2006; MAYR et al., 1999;
REARDON et al., 2001).

In an effort to maintain homeostasis, the human body
generates a biological response through a dynamic balance
between the processes of protein synthesis and degradation
(MITCH and GOLDBERG, 1996; LECKER et al., 1999;
HORNBERGER and ESSER, 2004). The processes
responsible for triggering muscle atrophy are related
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to a reduction in protein synthesis, an alteration in the
activity of oxidative enzymes and a reduction in protein
degradation (MUJIKA and PADILLA, 2001; GLASS, 2003;
SASA et al., 2004; HUDSON and FRANKLIN, 2002).
Such processes characterize muscle hypotrophy by
reductions in protein content, muscle strength and cross-
section area as well as an alteration in muscle fiber type
(DIAZ-HERRERA et al., 2001; THOMPSON, 2002;
KASPER, TALBOT and GAINES, 2002; JACKMAN
and KANDARIAN, 2004; ROSANT, NAGEL and
PEROT, 2006).

The aim of the present study was to carry out a literature
review in order to analyze morphological alterations in
skeletal muscle tissue stemming from atrophy caused by
different periods and methods of immobilization. The
analysis addresses the effects of morphological alterations on
muscle mass, cross-section area, number of myonuclei and
the type 1 and type 2 fiber relations. The results and causal
factors of the harmful effects of immobilization on striated
skeletal muscle are discussed.

1.1 Effects of movphological altevations on muscle
mass

Skeletal muscle tissue mass in adults is determined
by the protein synthesis and degradation ratio
(GREENHAFF, 2006). The initial adaptive responses
of skeletal muscle to disuse are apparently a reduction
in protein synthesis, an increase in protein degradation
and a reduction glycogen content, which contribute
toward a reduction in muscle mass and contractibility
(LINDERMAN et al.,, 1994; BODINE et al., 2001;
GLASS, 2003; SILVA et al., 2006; ZHONG, LOWE and
THOMPSON, 2006). Different periods of immobilization
can cause different degrees of hypotrophy. With as little as
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one day of immobilization, there can be an approximately 8%
reduction in mass in the gastrocnemius muscle, whereas this
reduction can reach 19% after three days and as high as 20
to 30% after five days of immobilization. The acceptability
of the progression of atrophy due to disuse is founded on
the alteration in the protein metabolism, which involves
both a reduction in synthesis and an increase in degradation
(KRAWIEC et al., 2005). In one study, the soleus muscle of
rats exhibited a 34% reduction in weight after seven days of
immobilization with a resin brace in comparison to a control
group, thereby suggesting proteolytic activity stemming
from disuse and the osmotic mobilization of active energy
reserves (SILVA et al., 2006).

During immobilization, the transcription levels of mRNA
are reduced in an accentuated fashion in postural (tonic)
muscles. Such levels are expressed through the production
of the myosin heavy chain, the regulation of which is altered
in rats that have had their legs immobilized for seven days,
leading to a 36.3% reduction in the mass of the soleus
muscle (GIGER et al., 2005). Despite using different
methods of immobilization, Fournier et al. (1998), Itai,
Kariya and Hoshino (2004 ), and Booth and Seider (1979)
confirm these findings, as these authors respectively found
a 55, 52 and 53% reduction in muscle in rats immobilized
for different periods of time (28 days, 5 weeks and 12 weeks,
respectively).

1.2 Effects on cross-section area

The atrophy process causes a diversity of alterations
in the muscle fibers, including sarcomere dissolution,
endothelial degradation, the buildup of connective tissue
between muscle fibers, accentuated reduction in the number
of mitochondria, elimination of apoptotic myonuclei
and a reduction in capillary density (OKY et al., 1995;
SMITH et al, 2000; MUJIKA and PADILLA, 2001;
HUDSON and FRANKLIN, 2002) These alterations lead to
areduction in the cross-section area of the muscle fiber when
the muscle is submitted to atrophic conditions (MUJIKA
and PADILLA, 2001; HUDSON and FRANKLIN, 2002).
The minimal action of gravity can have harmful effects on
skeletal muscle in astronauts, with a 26% reduction in cross-
section area in type 2a fibers and 15% reduction in type 1
fibers (EDGERTON et al., 1995; WIDRICK et al., 1999).

The confinement of patients to bed for long periods is
another situation that can lead to alterations in muscle fiber
arca. Kawashima et al. (2004) report a reduction in the
cross-section area of the short adductor muscle in patients
confined to a bed for 20 days. Muscles damaged by disuse can
be restored to their original size after ambulation is restored
for a certain period. Consequently, the production of muscle
strength is proportional to the number of days in which the
muscle is submitted to disuse (BAMMAN et al., 1998). The
reduction in cross-section area of the muscle fibers is due to
atrophic conditions, which may affect muscle strength and
locomotor activity (HUDSON and FRANKLIN, 2002).

1.3 Reduction in the number of myonuclei

The disappearance of myonuclei is one of the pathological
signs of muscle atrophy (HIKIDA et al., 1997; MITCHELL
and PAVLATH, 2001; MACHIDA and BOOTH, 2004Db).
Using rats with immobilized hind legs, Dupont-
Versteegden et al. (1999, 2000) and Smith et al. (2000)

found a reduction in the number of skeletal muscle fibers.
Machida and Booth (2004b) report that this reduction occurs
together with a reduction in cross-section area. However, a
number of studies suggest that the reduction in myonuclei
is not always proportional to the reduction in cross-section
area (SMITH et al.,, 2000; ALLEN et al., 1996,1997).
Due to the difference in the ratio of the different types of
skeletal muscle fibers, the loss of myonuclei is greater in one
type of fiber than the others (EDGERTON et al., 2002).
Slow contracting muscle fiber (type 1) in rats contains a
greater number of myonuclei per unit of length than type 2
fibers (ALLEN et al., 1996). Studies involving microscopy
and adults rats submitted to conditions of atrophy have
demonstrated that type 1 fibers undergo a greater loss
of myonuclei than type 2 fibers (HIKIDA et al., 1997;
BIGARD et al., 1997). Analyzing muscles in humans whose
lower limbs had been immobilized, Mitchell and Pavlath
(2001) and Hikida et al. (1997) found a greater reduction
in the number of myonuclei in type 1 fibers of the soleus
muscle in comparison to type 2 fibers in the plantar muscle.
Ohira et al. (2001) report a reduction in the cross-section
area and number of myonuclei in the muscle fibers of
newborn rats.

1.4 Relation between type 1 and type 2 fibers

Animals submitted to immobilization exhibit alterations
in the contractile properties of skeletal muscles, such as an
increase in maximal contraction velocity and, consequently,
the strength-velocity ratio in slow contracting muscles. Such
alterations coincide with an increase in the content of fast
myosin or the transformation of type 1 into type 2 fibers
(GARDETTO, SCHLUTER and FITTS, 1989). There
are no scientific studies offering a detailed description of
the effects of immobilization on muscle function together
with myosin and fiber type (BERG, LARSSON and
TESCH, 1997). However, Kauhanen et al. (1998) and
Daugaard and Richter (2001) report that muscles made up
of predominantly type 1 fibers take on properties of muscles
made up of predominantly type 2 fibers after a few weeks of
immobilization. Tischler et al. (1993) report considerable
muscle atrophy in slow-contracting fibers (type 1) in young
rats submitted to minimal gravity, thereby demonstrating
the effect of gravity on the maintenance of muscle tone and
the morphology of type 1 fibers. In another study involving
minimal gravity, Fitts et al. (2000) found a reduction in the
weight of the gastrocnemius, plantar and soleus muscles
(16, 24 and 38%, respectively). In rats, the slow-contracting
fibers of anti-gravity muscles and the extensor group,
such as the soleus and long adductor, are more affected
by atrophic conditions than those of the fast-contracting
muscles and flexor group (FIITS et al., 2000). Analyzing
the soleus muscle after four weeks of immobilization, Booth
(1982) reports an absolute reduction in the number of slow-
contracting fibers, but found no significant difference in the
number of fast-contracting fibers. These results corroborate
those reported by Maier et al.(1976) and Edgerton et al.
(2002) who also found a reduction in the proportion of slow-
contracting fibers in the muscles of immobilized legs in rats.
However, using the same immobilization model, Cardenas,
Stolov and Hardy (1977) found no reduction in the total
number of muscle fibers of the soleus muscle. A number of
other studies also report no change in the absolute number
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of muscle fibers (TIMSON et al., 1985; ANTONIO and
GONYEA, 1993a, 1993Db).

2 Conclusion

Under atrophic conditions, there is greater protein
degradation than synthesis in skeletal muscle tissue. This
protein degradation leads to a reduction in the protein
content responsible for the maintenance of the intrinsic
properties of muscle tissue. Hypotrophy, such as in conditions
of reduced gravity, confinement to a bed for long periods of
time and the immobilization of limbs, leads to a reduction in
the cross-section area of muscles as well as a reduction in the
number and domain of the nuclei. Despite the contrasting
results of studies, there is also a change in the proportion
of slow and fast fibers, with alterations to the characteristics
of type 1 fibers, which take on the characteristics of type 2
fibers. Thus, atrophy plays an important role in pathological
conditions that lead to the loss of the properties of skeletal
muscle tissue.
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