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Abstract

Introduction: The equine ovary is peculiar in that, unlike other mammalian ovaries, its germinal surface, where 
follicles and oocytes are found, is located at the organ’s central portion, while its conjunctive tissue and vessels are 
found in the external layer. The purpose of this study was to describe morphological and quantitative aspects of 
preantral and antral follicles in the equine ovary. Materials and Methods: Of the 189 mare ovaries evaluated, six 
were collected from necropsied mares and sliced lengthwise parallel to the ovulation fossa. The slices were fixed 
and processed for histological evaluation under light microscopy. Preantral follicles were classified according to 
developmental stage and as morphologically normal or degenerated. For the remaining 183 ovaries, obtained 
from an abattoir, antral follicles were measured, punctured and oocytes evaluated. Oocyte recovery rates were 
calculated for each follicle size category. A total of 490 preantral follicles were examined. Results: Primary 
follicles were in greater number than primordial follicles. No secondary follicles were found. A total of 518 antral 
follicles were punctured and evaluated. Total oocyte recovery rate was 47.6. Preantral follicles were scarce in 
the equine ovary. Conclusion: Oocyte recovery rate was higher for smaller-diameter antral follicles. 
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1 Introduction

Akin to some species, equine ovaries are both endocrine‑secreting, 
among other hormones, 17β-estradiol-and exocrine-generating 
germinative female cells: the oocytes (BRINSKO, BLANCHARD 
and VARNER, 2011). They are located ventrally to the 4th 
or 5th lumbar vertebra and most of their surface is covered by 
peritoneum, except at the hilus, the small portion where vessels 
and nerves are inserted (HARE and BETTERIDGE, 1978).

The equine ovary is peculiar in that, unlike other mammalian 
ovaries, its germinal surface, where follicles and oocytes are 
found, is located at the organ’s central portion, while its 
conjunctive tissue and vessels are found in the external layer. 
Consequently, ovulation takes place only in the ovulation 
fossa, which begins to develop in early gestation, when the 
ovarian cortical layer, where preovulatory follicles (POFs) 
will be present, starts to contract and invaginate (WALT, 
STABENFELDT, HUGHES et al., 1979).

Of the several different cell types found in the ovarian 
structure, conjunctive tissue cells, oocytes, and both granulosa 
and theca cells are the most important. Mammalian ovaries have 
a reserve pool of germ cells: the oocytes included in preantral 
follicles (PAFs). These structures are to ensure reproduction 
capacity throughout the reproductive life of females, conserving 
oocytes until ovulation time (SILVA‑SANTOS, SANTOS, 
SILOTO et al., 2011). Because PAFs are available in great 

numbers, their use is advantageous for the preservation of 
genomic material and development of new individuals from 
these oocytes.

POFs have been extensively used in breeding protocols. 
Employing POFs in biotechniques such as artificial insemination 
(LOOMIS, 1986), embryo transfer (PESSOA, CANNIZZA, 
REGHINI  et  al., 2011), intracytoplasmic injection of 
spermatozoa (COCHRAN, MEINTJES, REGGIO et al., 1998), 
and use of sexed semen (SAMPER, MORRIS, PEÑA et al., 
2012) has led to considerable advancements in the areas of 
reproductive physiology, gametogenesis, and embryogenesis 
(AURICH, 2012).

Importantly, these biotechniques have not only had a marked 
impact on the quality of genetic resources from livestock species, 
but have also led to the creation of germplasm banks, which 
allow genetic material from endangered species to be preserved 
(LEON-QUINTO, SIMON, CADENAS et al., 2009).

With regard to POFs, oocyte recovery rate and oocyte 
quality can be affected by several factors, including the recovery 
technique adopted, follicle size, and time elapsed between 
puncture and beginning of culture. Oocytes can be obtained 
from slaughtered animals (SUTTON-MCDOWALL, YELLAND, 
MACMILLAN et al., 2014), by ultrasound‑guided ovarian 
puncture in vivo, (IACONO, MERLO, RIZZATO et al., 2014) 
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or by laparoscopy-assisted methods (REICHENBACH, 
WIEBKE, MÖDL et al., 1994).

However, relevant information on early folliculogenesis, and 
likewise about mare follicle population, is scarce, although PAFs 
have been quantified and characterized in other mammalian 
species. Follicle population per ovary is highly variable across 
species, having been estimated at 35 000 in caprines (LUCCI, 
AMORIM, RODRIGUES et al., 1999) and 160 000 in ovines 
(AMORIM, LUCCI, RODRIGUES et al., 2000). PAFs can 
be frozen and/or cultured in vivo or in vitro and developed 
until a suitable stage when in vitro fertilization (IVF) can be 
performed.

In equines, oocyte recovery followed by IVF is crucial for 
commercial embryo transfer programs. Although frozen oocytes 
can be kept in banks for future fertilization, the retrieval and 
viability of maintaining these cells pose a considerable challenge 
for IVF and embryo transfer programs (THARASANIT, 
COLLEONI, LAZZARI et al., 2006).

Although the morphology and viability of normal 
cumulus‑oocyte complexes have been investigated (CURCIO, 
GASTAL, PEREIRA  et  al., 2014; FOSS, ORTIS and 
HINRICHS, 2013), scant data are available on the effect of 
follicular diameter on oocyte recovery rates. Abattoirs are a 
promising option for obtaining equine oocytes in great numbers, 
since gonads would otherwise be discarded (DELL’AQUILA, 
CHO, MINOIA et al., 1997). Another advantage is that mares 
sent to abattoirs have not been subjected to superovulation 
procedures or other reproductive treatments, thereby allowing 
ovaries to be evaluated under normal physiological conditions. 
Also, characterization and quantification of equine follicles can 
help improve methods of isolating PAFs for in vitro culture, 
as well as POF puncture in IVF.

The purposes of this study were to describe morphological 
and quantitative aspects of the preantral follicle population in 
equine ovaries and to evaluate the effect of follicular diameter 
on the recovery rates of oocytes harvested from equine ovaries 
obtained from an abattoir.

2 Materials and Methods

Equine ovaries (n = 189) were collected from 183 mares 
slaughtered in an abattoir and from six mares subjected to 
euthanasia in a veterinary hospital due to trauma or colic 
syndrome. Mare ages (range 2-23 years) were determined 
based on dental arcade features. One animal was a fetus with 
a gestational age of 7 months. All adult mares died during the 
ovulatory season. All animals were crossbred.

2.1 Experiment 1

The ovaries obtained from necropsied euthanized animals 
(October, 20° 26’ 34” S, 54° 38’ 47” W) were collected 
immediately after opening the abdominal cavity and then sent to 
the laboratory for determinations of weight and measurements. 
For evaluation of PAFs, the ovaries were sliced lengthwise 
into 3 mm–thick fragments, parallel to the ovulation fossa. 
During manipulation, the fragments were kept in phosphate 
buffer saline (PBS) at 38 °C and fixed in Carnoy’s fluid (60% 
ethanol, 30% chloroform, and 10% glacial acetic acid) for 12 h. 
Fragments were then processed for histology, as follows: serial 
dehydration in ethanol (70%, 80%, 90%, and 100%); clarification 
in xylene; paraffin embedding; and transection in a microtome 
(5 μm thickness). The slices were cut every 50 μm to avoid 

counting the same follicle twice and then subjected to periodic 
acid‑Schiff (PAS) reaction to allow identification of the basement 
membrane. For evaluation of PAF morphology, only follicles 
having the oocyte nucleus in the slice being observed were 
classified as primordial (one flattened granulosa cell layer) or 
primary (one cuboidal granulosa cells layer).

The follicles were also classified as morphologically normal 
or degenerated, based on granulosa cell features (morphology 
and density), nucleus characteristics, basement membrane 
integrity, and presence of pyknotic bodies (Table 1).

Descriptive statistics were employed for data treatment.

2.2 Experiment 2

The ovaries obtained from the abattoir (January, 23° 25′ 38″ S, 
51° 56′ 15″ W) were collected from the inspection table, 
placed in containers with 0.9% physiologic saline plus penicillin 
(100 UI/mL) and streptomycin (50 μg/mL), and sent to the 
laboratory, where the antral follicles detected on the ovarian 
surface were counted, measured, and categorized according 
to diameter as Class A (≤15 mm), Class B (20‑30  mm), 
or Class C (≥35 mm). Oocytes were harvested by follicle 
puncture performed with an 18G needle attached to a syringe. 
The follicular fluid was added to phosphate buffer saline 
(PBS), 10% fetal calf serum (FCS), penicillin (100 UI/mL), 
and streptomycin (50 μg/mL). The resulting mixture was 
decanted in a test tube, the supernatant discarded, and the 
cells transferred to a Petri dish for oocyte evaluation under a 
stereoscopic microscope.

The data were subjected to ANOVA. Tukey’s test was 
employed to compare means. Differences were considered 
significant for values of p < 0.05.

3. Results

Of the 189 ovaries investigated, 168 (88.88%) had several 
antral follicles on their surface. Of these 168, 70 (41.66%) 
showed corpora lutea. Mean ovarian length, width, and 

Table 1. Morphological classification of equine preantral follicles 
according to histological features (normal or degenerated) after 
periodic acid-Schiff (PAS) reaction.

Classification Morphological features

Normal (N)
Intact oocyte
Organized granulosa cells and 
non-degraded nucleus

Type 1 degeneration

T1A
Contracted oocyte
Pyknotic nucleus
Non-degraded basement membrane

T1B
Contracted oocyte
Pyknotic nucleus
Degraded basement membrane

Type 2 degeneration

T2A
Pyknotic oocyte
Granulosa cell disorganization
Non-degraded basement membrane

T2B
Pyknotic oocyte
Granulosa cell disorganization
Degraded basement membrane
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thickness  (mm) were 55.74 ± 12.95, 41.97 ± 11.02, and 
35.17 ± 13.39, respectively. Mean weight was 37.03 ± 31.26 g.

Of the 490 PAFs counted in experiment 1, 199 were 
primordial (40.6%; Table 2) and 291 primary (59.4%; Table 3) 
(Figure 1) – i.e., their numbers were very small in both cases, 
a large variation in the numbers of follicles of each class was 
evident across animals, and even an absence of primordial 
follicles occurred in the oldest mare (23 years). This caused 
most standard deviation values to be higher than the means 
(Tables 2 and 3).

Among the 168 ovaries in the second experiment, 518 antral 
follicles were punctured. Follicle categorization was distributed 
as follows: Class A, 61.9% (321): Class B, 26.8% (139); Class 
C, 11.1% (58). Stratified by category, recovery rates were 
as follows: Class A, 53.5%; Class B, 35.9%; Class C, 43.1%. 
The overall oocyte recovery rate was 47.6%. Mean number of 
follicles per ovary was 3.0. Mean numbers in each class were 
as follows: Class A, 1.9 (321/518); Class B, 0.8 (139/518); 
Class C, 0.3 (58/518). Mean number of oocytes obtained by 
puncture was 1.47 per ovary. Relationships between follicle 
diameters and oocyte recovery rates are shown in Table 4.

Ovarian sizes and corpus luteum percentages (41.66%) 
were consistent with the season of ovary collection and the 
corresponding reproductive cycle stage in mares.

Identifying PAFs in situ in equine ovaries is a more complex 
task than in other mammals. Lucci, Kacinskis, Lopes et al. 
(2004), employing cryopreservation techniques, identified 
4901 follicles in bovine ovaries (LUCCI, KACINSKIS, 
LOPES  et  al., 2004). In mares, however, the germinative 
epithelium is limited to the ovulation fossa, yet PAFs can be 
found in the entire ovarian stroma in groups of 2 to 7 follicles, 
although they more often occur singly, as observed in the 
present experiment (SZLACHTA and TISCHNER, 1998). 
These factors contribute to the difficulties experienced locating 
follicles in the equine ovary, given the size of this gonad.

In mares, Driancourt, Paris, Roux  et  al. (1982) found 
a higher number of PAFs (35 950 of them primordial and 
100 primary or secondary) per ovary (DRIANCOURT, PARIS, 
ROUX et al., 1982). By contrast, mares in the present study 
had a higher percentage of primary than primordial follicles. 
Low percentages of primordial follicles have also been observed 
in other species. Examining elephant ovaries, Stansfield, Picton 
and Nöthling (2011) found that the ovarian follicle reserve 
harbored 75% primary follicles, but only 2% primordial follicles 
(STANSFIELD, PICTON and NÖTHLING, 2011).

In older mammals, low percentages of follicles may be 
due to atresia or apoptosis (GINTHER, 1992), or to oocyte 
consumption along the lifespan. Follicle populations are not 

Table 2. Distribution of primordial follicles per equine ovary, by morphological class.

Animal Age (years)
Primordial follicles

Total
Normal T1A T1B T2A T2B

1 23 0 0 0 0 0 0
2 18 0 0 1 0 8 9
3 14 1 0 0 0 13 14
4 8 0 6 0 5 3 14
5 2 5 11 0 13 47 76
6 0.58 2 11 0 45 28 86

Total 8 28 1 63 99 199
Mean ± 1.333 4.666 0.166 16.5 10.5 33.166

SD 1.966 5.428 0.408 17.896 17.649 37.536

Table 3. Distribution of primary follicles per equine ovary, by morphological class.

Animal Age (years)
Primary follicles

Total
Normal T1A T1B T2A T2B

1 23 0 0 0 0 5 5
2 18 0 0 0 2 2 2
3 14 0 1 0 2 6 7
4 8 0 1 0 4 6 12
5 2 10 18 5 8 91 137
6 0.58 4 13 0 10 66 128

Total 14 33 5 176 26 291
Mean ± 2.333 5.5 0.833 4.333 29.333 48.5

SD 4.082 7.918 2.041 3.881 38.923 65.209

Table 4. Rates of oocyte recovery from equine ovaries, by follicular diameter.

Variables
Follicular diameter

A (≤15 mm) B (20-30 mm) C (≥35 mm)
Punctured follicles (%) 61.9a 26.8b 11.1c

Oocyte recovery (%) 53.5a 35.9b 43.1a,b

a-cDifferent letters in same row indicate significant differences (p<0.05).
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renewed in most mammalian species, including mares–although 
rare instances have been described in humans (BUKOVSKY, 
CAUDLE, SVETLIKOVA et al., 2004).

In the present study, secondary follicles were not observed 
among growing follicles, at any stage. Secondary follicles are 
typically found in small numbers, given their short lifespan 
(MÜLLER, ELLENBERGER and SCHOON, 2009). 
Evaluating PAF populations in situ in mare ovaries, Haag, 
Magalhães‑Padilha, Fonseca et al. (2013) found only primordial 
and primary follicles, similarly to the present study.

In the present investigation, the rate of aspiration was 
higher for Class A antral follicles, followed by Classes B and 
C –results corroborating those of Hinrichs (1991), who found 
the proportion of viable follicles to rise with increasing follicle 
size. Zúccari, Bender, Silva et al. (2013) observed mean follicle 
populations, evaluated by rectal palpation, of 2.84, 1.15, 
and 1.15 for Classes A, B, and C, respectively (ZÚCCARI, 
BENDER, SILVA et al., 2013) (employing the same criteria 
for class definition as the present study).

Oocyte recovery rate was 47.6 in the present investigation, 
lower than the 54% obtained by Jacobson, Choi, Hayden et al. 
(2010), who employed hormonal manipulation to cycle mares 
(JACOBSON, CHOI, HAYDEN et al., 2010).

In mares, the oocyte-cumulus complex is attached to the 
follicle wall by a wide base (GINTHER, 1992), contrasting with 

other species, in which cumulus cells exhibit a pedunculated 
structure – a histological feature likely to promote stronger 
oocyte adhesion, resulting in lower recovery rates, especially 
when collection involves aspiration.

Follicle external diameter has an effect on oocyte quality 
and oocyte developmental competence after maturation, 
fertilization, and in vitro culture (GOUDET, BEZARD, 
DUCHAMP et al., 1997). Experiments conducted on different 
species have revealed that large follicle size may be related to 
increased percentages of fertile oocytes during IVF in bovines 
(PAVLOK, LUCAS-HAHN and NIEMANN, 1992), swine 
(LUCAS, MARTÍNEZ, ROCA et al., 2003), and humans 
(TEISSIER, CHABLE, PAULHAC et al., 2000).

In the present investigation, Class A ovaries contained larger 
follicle populations available for oocyte aspiration. Recovery 
rates were higher for Class A than for Class B follicles. For IVF 
protocols, two issues have yet to be resolved: efficient methods 
for both oocyte recovery and sperm preparation for in vitro 
fertilization.

4. Conclusion

In mares, germ cells in the ovarian stroma exhibit a peculiar 
organization that differs from most mammalian species. 
Follicles can be found in groups or isolated. PAFs occur in 
small numbers. Primary follicles occur at higher percentages. 
Secondary follicles were absent. Antral follicles measuring 
15 mm or less constituted the largest population available for 
oocyte aspiration, with higher recovery rates.
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